

Pergamon Tetrahedron: Asymmetry 11 (2000) 3609-3617

Lipase-catalyzed kinetic resolution of ethyl 3-aryl-3-hydroxypropionate: preparation of the side chain of a novel carbapenem, J-114,870

Yuichi Sugimoto,* Hideaki Imamura, Aya Shimizu, Masato Nakano, Shigeru Nakajima, Shinnosuke Abe, Koji Yamada and Hajime Morishima

> Banyu Tsukuba Research Institute, Okubo-3, Tsukuba 300-2611, Ibaraki, Japan Received 25 July 2000; accepted 17 August 2000

Abstract

An optically active 3-aryl-3-hydroxypropionate 3a was prepared by lipase-catalyzed kinetic hydrolysis of a diastereomeric mixture of 3-aryl-3-(α -chloroacetoxy)propionate 6 in good conversion yield with adequate purity (>95% de). This enzymatic reaction proceeded with great efficiency as measured by reaction rate, chemical yield and stereoselectivity. The compound 3a was converted to J-114,870 1a, a novel ultra-broad spectrum carbapenem, without significant epimerization. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the course of investigating new carbapenems, we synthesized J-114,870 1a which possesses a unique trans-3,5-disubstituted pyrrolidin-3-ylthio side-chain at the C-2 position of the 1βmethylcarbapenem¹ nucleus, and found that this novel carbapenem had an ultra-broad antimicrobial spectrum covering clinically important strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa.² Using (2R,4R)-4-hydroxy-2-phenylpyrrolidine derivative 4 as a precursor,³ the side chain of J-114,870 was synthesized using lipase as a biocatalyst, or by chemical asymmetric synthesis.⁴

Biocatalysts have often played an important role in the preparation of homochiral compounds that are not obtained easily by conventional chemical reactions. In particular, lipase⁵ has been applied to many transformations such as kinetic resolution of racemic compounds⁶ and asymmetric synthesis of chiral 1,3-propanediols⁷ because of its wide susceptibility of substrates, stability under various conditions, and commercial availability. Enzymatic resolution of a diastereomeric mixture of ethyl 3-aryl-3-hydroxy propionate 3 was considered to be a practical method for preparing homochiral thiol 2a, a side chain of J-114,870 1a (Fig. 1). Herein, we describe in detail the lipase-mediated resolution of a diastereomeric mixture of 3-aryl-3-hydroxypropionate 3 and the following transformation to a side chain of J-114,870.

0957-4166/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0957-4166(00)00326-8

^{*} Corresponding author. Tel: +81-298-77-2220; fax: +81-298-77-2027; e-mail: sugmtoyt@banyu.co.jp

Figure 1. Synthesis of J-114,870 1a

2. Results and discussion

2.1. Synthesis and enzymatic resolution of the chloroacetates 6

Commercially available (R)-4-hydroxy-2-pyrrolidone was converted into 2,4-cis-disubstituted pyrrolidine 4 with high enantiomeric purity (>99.5% de) according to our previous report.³ The aldehyde 4 was subjected to aldol condensation with ethyl acetate by the action of lithium hexamethyldisilazide (LHMDS) at -78° C to provide a diastereomeric mixture of 3-aryl-3-hydroxypropionate 3 (ca. 10% de) (Scheme 1).

Scheme 1. Synthesis of key intermediate 3a and conversion into J-114,870 1a

Enzyme-catalyzed acylation of alcohol 3 using vinyl acetate, isopropenyl acetate or acetic anhydride as an acetylating agent did not proceed with acceptable yield or selectivity. Enzyme hydrolysis of acetylated 3 afforded similar unsatisfactory results.

Next, diastereomers 3 were converted into the corresponding chloroacetates 6 by treatment with chloroacetyl chloride and 4-dimethylaminopyridine (DMAP), and the resulting chloroacetates 6 were hydrolyzed by using several enzymes in phosphate buffer (Table 1). When lipase LIP⁸ was used (entry 1), the reaction proceeded with the highest selectivity (E value⁹ = 747) and ended within 2 hours. It should be noted that prolonged reaction time did not diminish the diastereomeric excess of the hydrolyzed product. Sufficient diastereomeric excesses were also obtained by lipase PS¹⁰ (entry 5), lipase MY (entry 10) and lipase Type VII (entry 13) with a longer reaction time (14 h).

Lipase-catalyzed hydrolysis of chloroacetates **6** was carried out using buffer solutions between pH 5 and 9 (Table 2). The results showed that the appropriate pH for this lipase-catalyzed reaction was 7.0–8.5, which provided both diastereomers **3a** and **6b** with sufficient enantiomeric purity (>95% de). Reactions conducted below pH 6.5 did not complete and the remaining **6b** showed moderate diastereomeric excess.

2.2. Application to the large scale synthesis

Thus, a diastereomeric mixture of benzyl alcohol 3 was successfully resolved by the lipase-catalyzed hydrolysis of the corresponding chloroacetates 6 with good diastereoselectivity to afford the hydrolyzed product 3a with (R)-configuration and intact 6b. Under optimized conditions, hydrolysis of 1000 g of alcohol 3 took place smoothly to provide 3a (400 g) and 6b (390 g), both of which showed excellent enantiomeric purity (>99% de). Chloroacetate 6b was easily hydrolyzed by means of aqueous ammonia in ethanol to yield (S)-alcohol 3b. The optically active alcohol 3a thus obtained could be converted into Alloc-protected amino compound 7a by the conventional procedure, as described in Scheme 1, without any appreciable epimerization of the resolved stereogenic center. Amino ester 7a was transformed into J-114,870 1a according to reported procedures, including coupling reaction of the side chain thiol 2a with allyl-protected 1β -methylcarbapenem diphenylphosphate 5.

2.3. Determination of the stereochemistry of alcohols 3a and 3b

Absolute configuration of the stereogenic center (C7') of **3a** and **3b** was determined by the application of the advanced Mosher's method¹¹ to the MTPA esters **8a** and **8b**, which were obtained from the secondary alcohols **3a** and **3b**, respectively, by acylation with (+)-MTPA-Cl in the presence of DMAP and successive removal of the Boc group by TFA (Fig. 2). Comparison of the ¹H NMR spectrum of the MTPA esters **8a** and **8b** indicated that the resolved stereogenic center of **3a** was (*R*)- and hence **3b** had (*S*)-configuration (Fig. 2, Table 3).

3. Conclusions

A diastereomeric mixture of the 3-aryl-3-(α -chloroacetoxy)propionate 6 was successfully converted into the enantiopure 3-aryl-3-hydroxypropionates 3a and 3b in good conversion yield via the lipase-catalyzed kinetic resolution process. Of all the enzymes tested, lipase LIP was the

Table 1 Effect of the enzyme^a

Entry	Enzyme	Source	Time	3a	6b	E value ⁿ	
			(h)	% de ^j (% yield)	% dem (% yield)		
1	Lipase LIP ^b	Pseudomonas aeruginosa	2	99 (44)	95 (38)		
2	Lipase LIPb,c	Pseudomonas aeruginosa	14	98 (42)	76 (48)	228	
3	Lipase LIP ^{b,d}	Pseudomonas aeruginosa	14	98 (32)	35 (62)	140	
4	Lipase LIPb,e	Pseudomonas aeruginosa	14	$N.D.^k$			
5	Lipase PS ^f	Pseudomonas cepacia	14	96 (47)	96 (36)	194	
6	Lipase M10 ^f	Mucor javanicus	14	N.R. ¹			
7	Lipase A6 ^f	Aspergillus niger	14	$N.R.^{1}$			
8	Lipase F-AP15 ^f	Rhizopus javanicus	14	$N.R.^{1}$			
9	Newlase F ^f	Rhizopus niveus	14	$N.R.^{1}$			
10	Lipase MY ^g	Candida cylindracea	14	94 (42)	97 (30)	136	
11	Lipase ^h	Steapsin	14	N.R.1	,		
12	Lipase Type II ⁱ	Porcine pancreas	14	$N.D.^k$			
13	Lipase Type VII ⁱ	Candida cylindracea	14	98 (42)	93 (34)	340	

^a Standard conditions: 6 50 mg, enzyme 50 mg, acetone 0.5 ml, phosphate buffer (0.1 M, pH 7.0) 1.0 ml.

most efficient catalyst as measured by stereoselectivity, reaction time and feasibility of large-scale preparation. In addition, enantiopure alcohol **3a** could be converted into J-114,870 **1a**, a novel ultra-broad spectrum carbapenem, without appreciable epimerization.

^b Purchased from TOYOBO.

^c Enzyme 25 mg.

^d Enzyme 5 mg.

^e Enzyme 1 mg.

f Purchased from AMANO.

g Purchased from MEITO.

^h Purchased from TOKYO KASEI.

i Purchased from SIGMA.

^j Determined by HPLC analysis using the chiral phase column (CHIRALCEL OD-H, DAICEL).

^k Not determined.

¹ No reaction.

^mDetermined by HPLC (see footnote j) of the corresponding alcohol 3b.

ⁿ $E = \ln\{1 - c[1 + 3a(ee)]\}/\ln\{1 - c[1 - 3a(ee)]\}, c = 6b(ee)/[6b(ee) + 3a(ee)]$ (Ref. 9).

Table 2
Effect of pH^a $\begin{array}{c}
\text{Lipase LIPa} \\
\mathbf{6} & \longrightarrow \mathbf{3a + 6b}
\end{array}$

рН	5	5.5	6	6.5	7	7.5	8	8.5	9
% de of 3a	95.2	97.0	98.8	99.1	98.9	98.8	99.4	98.9	98.3
% de of 6b	5.7	3.8	18.2	71.0	95.4	95.4	$> 99.8^{b}$	$> 99.8^{\rm b}$	$> 99.8^{\rm b}$
E value	41	68	237	425	747	747	> 2293	>1171	>869

^a Conditions: 6 50 mg, lipase LIP 50 mg, acetone 0.5 ml, phosphate buffer (0.1 M) 1.0 ml.

MTPA: α -methoxy- α -(trifluoromethoxy)phenylacetyl TFA: trifluoroacetic acid

Figure 2. Conversion of 3a and 3b into MTPA ester 8a and 8b

4. Experimental

4.1. General methods

The ¹H NMR spectra were recorded on a Varian VXR-300 (300 MHz) spectrometer and a JEOL JNM-A500 (500 MHz) spectrometer with tetramethylsilane (TMS) as an internal standard. ¹³C NMR spectra were recorded on a JEOL JNM-A500 (500 MHz). IR absorption spectra were recorded on a Horiba FT-200 spectrometer. Specific rotations were measured on a Jasco DIP-370 polarimeter. Mass spectra (MS) were measured on a JEOL JMS-SX102A spectrometer. The silica-gel TLC was performed with Merck Kieselgel F₂₅₄ precoated plates. The silica gel used for column chromatography was WAKO gel C-300. All reactions involving air-sensitive reagents were performed under a nitrogen atmosphere using syringe-septum cap techniques.

^b 3a was not detectable by HPLC analysis.

Proton	2	3	4	5	2′	3′	7′	8′	10'	11′
8a	4 112		4.462	2.932	7.439	7.352	6.404	2.735	4.034	1.177
	4.112	2.412		3.051		1.332		3.014	4.061	
8b	4.080		4.457	2.923	7.370	7.197	6.344	2.740	4.117	1.227
		2.412	4.457	3.041					4.152	
$\Delta \delta \times 10^{-3} \text{ ppm}$	-32		5	-9	-69	155	-60	+5	+83	+50
		± 0	-5	-10		—155		+10	+91	

 $\begin{tabular}{ll} Table 3 \\ ^1H NMR of MTPA esters {\bf 8a} and {\bf 8b} \end{tabular}$

4.2. Synthesis of the substrates 6

4.2.1. (2R,4R)-1-tert-Butoxycarbonyl-4-tert-butyldimethylsiloxy-2-[4-(1-hydroxy-2-(ethoxy-carbonyl)ethyl)phenyl]pyrrolidine 3

To a solution of LHMDS (1 M in THF, 308 ml, 308 mmol) in THF (300 ml), EtOAc (31.5 ml, 323 mmol) was added dropwise at -78° C. After stirring for 1 h at -78° C, a solution of **4** (50.0 g, 123 mmol) in THF (200 ml) was added dropwise to the mixture over 1 h at -78° C. The reaction mixture was poured into H₂O and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/EtOAc=7:1–3:1) to give **3** (55.5 g, 91%) as a yellow oil. IR (KBr) v_{max} 2931, 1736, 1697, 1398, 1367, 1254, 1159, 1093, 839, 777 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.03 (6H, s), 0.79 (9H, s), 1.15 (6H, s), 1.27 (3H, t, J=7.4 Hz), 1.44 (3H, s), 1.87 (1H, m), 2.48 (1H, m), 2.70 (2H, m), 3.41 (1H, m), 3.84 (1H, m), 4.18 (2H, q, J=7.4 Hz), 4.37 (1H, m), 4.72 (0.7H, m), 4.88 (0.3H, m), 5.11 (1H, m), 7.23 (2H, d, J=8.2 Hz), 7.28 (2H, d, J=9.6 Hz); FAB-HRMS calcd for C₂₆H₄₃NO₆SiNa (M+Na)⁺: 516.2757. Found 516.2783.

4.2.2. (2R,4R)-1-tert-Butoxycarbonyl-4-tert-butyldimethylsiloxy-2-[4-(1-chloroacetoxy-2-(ethoxycarbonyl)ethyl)phenyl]pyrrolidine 6

To a solution of 3 (1032 g, 2.09 mol) and DMAP (1268 g, 10.4 mol) in CH₂Cl₂ (2000 ml), chloroacetyl chloride (1056 g, 9.35 mol) was added under a nitrogen atmosphere at 0°C. After the completion of the reaction, 6N hydrochloric acid was added to the reaction mixture to quench excess DMAP. The organic phase was washed with a saturated solution of NaHCO₃ and brine, dried over anhydrous MgSO₄ and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/EtOAc=5:1) to give 6 (922 g, 77%) as a yellow oil. IR (KBr) v_{max} 2956, 1743, 1697, 1396, 1365, 1257, 1172, 1093, 837, 777 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.02 (6H, s), 0.78 (9H, s), 1.14 (6H, s), 1.24 (3H, t, J=7.1 Hz), 1.45 (3H, s), 1.87 (1H, m), 2.47 (1H, m), 2.76 (1H, m), 3.01 (1H, m), 3.42 (1H, m), 3.80 (1H, m), 4.02 (2H, dd, J=17.4, 14.7 Hz), 4.14 (2H, q, J=7.1 Hz), 4.37 (1H, m), 4.72 (0.7H, m), 4.93 (0.3H,

m), 6.23 (1H, dd, J=9.3, 4.7 Hz), 7.26 (4H, m); FAB-HRMS calcd for $C_{28}H_{44}CINO_7SiNa$ (M+Na)⁺: 592.2473. Found 592.2477.

4.3. Enzymatic resolution of the substrates 6

4.3.1. (2R,4R)-1-tert-Butoxycarbonyl-4-tert-butyldimethylsiloxy-2-[4-((R)-1-hydroxy-2-(ethoxycarbonyl)ethyl)phenyl]pyrrolidine **3a** and (2R,4R)-1-tert-butoxycarbonyl-4-tertbutyl-dimethylsiloxy-2-[4-((S)-1-chloroacetoxy-2-(ethoxycarbonyl)ethyl)phenyl]pyrrolidine **6b**

To a solution of 6 (922 g, 1.62 mol) in acetone (9.2 l) and 0.1 M phosphate buffer (18.4 l, pH 8.0), lipase LIP (TOYOBO, 1.0 kg) was added and the mixture was stirred for 22 h at room temperature. After lipase was removed by filtration through a pad of Celite[®], the filtrate was diluted with H₂O (10 l) and extracted three times with EtOAc (40 l). The organic layer was washed with brine (10 1), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/EtOAc=7:1-3:1) to give **6b** (389 g, 42%) as a yellow oil and **3a** (407 g, 52%, >99% de by HPLC) as a yellow oil. **6b**: $[\alpha]_D^{20}$ -13.2 (c 1.0, CHCl₃); IR (KBr) v_{max} 2956, 1741, 1697, 1396, 1365, 1255, 1162, 1092, 837, 777 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.03 (6H, s), 0.79 (9H, s), 1.16 (6H, s), 1.24 (3H, t, J=7.3Hz), 1.46 (3H, s), 1.87 (1H, m), 2.47 (1H, m), 2.75 (1H, m), 3.01 (1H, m), 3.40 (1H, m), 3.81 (1H, m), 4.02 (2H, dd, J=17.3, 14.6 Hz), 4.14 (2H, q, J=7.3 Hz), 4.37 (1H, m), 4.72 (0.7H, m), 4.93 (0.3H, m), 6.24 (1H, dd, J=9.1, 4.8 Hz), 7.26 (4H, m); FAB-HRMS calcd for $C_{28}H_{44}CINO_7SiNa (M+Na)^+$: 592.2473. Found 592.2476. **3a**: $[\alpha]_D^{20}$ +54.2 (c 1.0, CHCl₃); IR (KBr) v_{max} 2933, 1734, 1697, 1398, 1367, 1254, 1159, 1093, 837, 777 cm⁻¹; ¹H NMR (300 MHz, $CDCl_3$) δ 0.03 (6H, s), 0.79 (9H, s), 1.16 (6H, s), 1.27 (3H, t, J = 7.4 Hz), 1.44 (3H, s), 1.86 (1H, m), 2.50 (1H, m), 2.70 (2H, m), 3.39 (1H, m), 3.84 (1H, m), 4.18 (2H, q, J=7.4 Hz), 4.37 (1H, m), 4.72 (0.7H, m), 4.89 (0.3H, m), 5.11 (1H, m), 7.23 (2H, d, J=8.7 Hz), 7.28 (2H, d, J=10.0 Hz)Hz); FAB-HRMS calcd for C₂₆H₄₃NO₆SiNa (M+Na)⁺: 516.2757. Found 516.2756. The enantiomeric purity of 3a was determined by HPLC analysis: column, Chiralcel OD-H (Daicel, $4.6\phi \times 250$ mm); eluent, n-hexane: i-PrOH = 95:5; flow rate, 1.0 ml/min; detection, UV 250 nm; rt, 9.3 min (3b) and 11.3 min (3a).

4.3.2. (2R,4R)-1-tert-Butoxycarbonyl-4-tert-butyldimethylsiloxy-2-[4-((S)-1-hydroxy-2-(ethoxy-carbonyl)ethyl)phenyl]pyrrolidine **3b**

To a solution of **6b** (389 g, 683 mmol) in EtOH (2 l), 25% aqueous ammonia (800 ml) was added and the mixture was stirred for 0.5 h at 15°C. The reaction mixture was poured into H₂O (5 l) and the whole was extracted with EtOAc (6 l). The organic layer was washed successively with 1N HCl (5 l), a saturated solution of NaHCO₃ (5 l) and brine (5 l), and then dried over MgSO₄. After evaporation under reduced pressure, the residue was purified by silica gel column chromatography (n-hexane/EtOAc=5:1–3:1) to give **3b** (310 g, 92%, >99% de by HPLC) as a yellow oil; [α]_D²⁰ +12.8 (c 1.0, CHCl₃); IR (KBr) ν_{max} 2931, 1734, 1697, 1398, 1367, 1254, 1159, 1092, 837, 777 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.03 (6H, s), 0.79 (9H, s), 1.16 (6H, s), 1.25 (3H, t, J=7.4 Hz), 1.44 (3H, s), 1.87 (1H, m), 2.50 (1H, m), 2.70 (2H, m), 3.41 (1H, m), 3.84 (1H, m), 4.18 (2H, q, J=7.4 Hz), 4.37 (1H, m), 4.72 (0.7H, m), 4.88 (0.3H, m), 5.11 (1H, m), 7.23 (2H, d, J=8.5 Hz), 7.28 (2H, d, J=8.9 Hz); FAB-HRMS calcd for C₂₆H₄₃NO₆SiNa (M+Na)⁺: 516.2757. Found 516.2739.

4.4. Synthesis of the MTPA esters **8a** and **8b** for determination of absolute configuration

4.4.1. (2R,4R)-4-tert-Butyldimethylsiloxy-2-[4-((R)-1-[(R)- $(\alpha$ -methoxy- α -(trifluoromethyl)-phenylacetoxy]-2-(ethoxycarbonyl)ethyl)phenylpyrrolidine **8a**

To a solution of 3a (327 mg, 0.662 mmol) in CH_2Cl_2 (10 ml), DMAP (324 mg, 2.65 mmol) and (S)-(+)- α -methoxy- α -(trifluoromethyl)phenylacetyl chloride ((S)-(+)-MTPA-Cl, 247 μ l, 1.32 mmol) were added at room temperature. After being stirred for 1 h at the same temperature, H_2O was added to the reaction mixture. The organic phase was separated and the aqueous phase was extracted with $CHCl_3$. The combined organic layer was washed with brine, dried over $MgSO_4$, and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/EtOAc = 5:1) to give a colorless oil (405 mg, 86%).

To a solution of the material obtained above (100 mg, 0.141 mmol) in CH₂Cl₂ (2 ml), TFA (100 µl) was added at 0°C and the mixture was stirred for 1 h at same temperature and then for 1.5 h at room temperature. The mixture was poured into H₂O and the whole mixture was extracted with EtOAc. The organic layer was washed with a saturated solution of NaHCO₃ and brine, dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (CHCl₃/MeOH = 10:1) to give **8a** (39 mg, 45%) as a yellow oil. [α]_D²⁰ +52.8 (c 1.0, CHCl₃); IR (KBr) ν_{max} 2954, 1749, 1257, 1173, 1122, 1020, 837, 777, 721 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.08 (6H, s), 0.90 (9H, s), 1.17 (3H, t, J=7.1 Hz), 1.73 (1H, m), 2.42 (1H, m), 2.73 (1H, dd, J=16.2, 4.5 Hz), 2.93 (1H, dd, J=11.7, 4.4 Hz), 3.02 (2H, m), 3.41 (3H, s), 4.07 (3H, m), 4.45 (1H, m), 6.40 (1H, dd, J=9.7, 4.4 Hz), 7.35 (5H, m); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 18.0, 25.8, 40.7, 44.1, 55.3, 56.9, 60.8, 61.9, 73.6, 74.3, 84.2, 122.0, 124.3, 127.1, 127.38, 127.42, 128.1, 129.4, 132.1, 136.4, 145.1, 165.4, 169.1; FAB-HRMS calcd for C₃₁H₄₃F₃NO₆Si (M+H)⁺: 610.2812. Found 610.2803.

4.4.2. (2R,4R)-4-tert-Butyldimethylsiloxy-2-[4-((S)-1-[(R)-(α -methoxy- α -(trifluoromethyl)-phenylacetoxy]-2-ethoxycarbonyl)ethyl)phenyl]pyrrolidine **8b**

By using the same procedure for preparing **8a** described above, **3b** (391 mg, 0.792 mmol) was condensed with (*S*)-(+)-MTPA-Cl to give a colorless oil (505 mg, 90%). The obtained material (100 mg, 0.141 mmol) was then treated with TFA to afford **8b** (44 mg, 51%) as a yellow oil. [α]_D²⁰ +22.8 (c 1.0, CHCl₃); IR (KBr) ν _{max} 2956, 1749, 1257, 1171, 1122, 1022, 837, 777, 721 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.08 (6H, s), 0.90 (9H, s), 1.23 (3H, t, J=7.1 Hz), 1.73 (1H, m), 2.41 (1H, m), 2.74 (1H, dd, J=16.5, 4.0 Hz), 2.92 (1H, dd, J=11.7, 4.6 Hz), 3.03 (2H, m), 3.51 (3H, s), 4.12 (3H, m), 4.46 (1H, m), 6.35 (1H, dd, J=10.0, 3.9 Hz), 7.29 (5H, m); ¹³C NMR (125 MHz, CDCl₃) δ 14.0, 18.0, 25.8, 41.0, 44.1, 55.5, 56.9, 60.9, 62.0, 73.7, 74.5, 84.4, 122.0, 124.3, 126.7, 127.23, 127.24, 128.1, 129.4, 132.0, 136.4, 144.9, 165.2, 169.5; FAB-HRMS calcd for $C_{31}H_{43}F_3NO_6Si$ (M+H)⁺: 610.2812. Found 610.2806.

Acknowledgements

We are grateful to Ms. A. Dobbins, Merck & Co. Inc., for her critical reading of this manuscript.

References

- 1. Ito, Y.; Terashima, S. J. Syn. Org. Chem. Jpn. 1989, 47, 606-618.
- 2. (a) Imamura, H.; Ohtake, N.; Shimizu, A.; Jona, H.; Sato, H.; Nagano, R.; Ushijima, R.; Yamada, K.; Hashizume, T.; Morishima, H. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 109–113. (b) Imamura, H.; Ohtake, N.; Shimizu, A.; Sato, H.; Sugimoto, Y.; Sakuraba, S.; Kiyonaga, H.; Suzuki-Sato, C.; Nagano, M.; Nagano, R.; Yamada, K.; Hashizume, T.; Morishima, H. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 115–118.
- 3. Imamura, H.; Shimizu, A.; Sato, H.; Sugimoto, Y.; Sakuraba, S.; Nakano, R.; Yamada, K.; Hashizume, T.; Morishima, H. J. Antibiot. 2000, 53, 314–316.
- 4. Imamura, H. et al. Tetrahedron 2000, 56, 7705-7713.
- (a) Iwai, M. Lipases: Their Foundation and Application; Saiwai Shobou: Tokyo, 1991.
 (b) Schmid, R. D.; Verger, R. Angew. Chem., Int. Ed. 1998, 37, 1609–1633.
 (c) Chen, C.-S.; Liu, Y.-C. J. Jpn. Oil Chem. Soc. 1992, 41, 724–733.
 (d) Robert, S. M., Ed.; Preparative Biotransformations: Whole Cell and Isolated Enzymes in Organic Synthesis; John Wiley & Sons Ltd: Chichester, England, 1992.
- 6. (a) Otera, J. Chem. Rev. 1993, 93, 1449–1470. (b) Ogasawara, K. J. Syn. Org. Chem. Jpn. 1996, 54, 15–26.
- 7. (a) Yokomatsu, T.; Minowa, T.; Murano, T.; Shibuya, S. *Tetrahedron* **1998**, *54*, 9341–9356. (b) Guanti, G.; Narisano, E.; Riva, R. *Tetrahedron: Asymmetry* **1998**, *9*, 1859–1862. (c) Itoh, T.; Takagi, Y.; Tsukube, H. *J. Mol. Catal. B: Enzym.* **1997**, *3*, 259–270. (d) Achiwa, K. *Yakugaku Zasshi* **1995**, *115*, 681–699. (e) Banfi, L.; Guanti, G.; Mugnoli, A.; Riva, R. *Tetrahedron: Asymmetry* **1998**, *9*, 2481–2492.
- 8. (a) Mizuguchi, E.; Suzuki, T.; Achiwa, K. Synlett 1996, 743–744. (b) Kita, Y.; Naka, T.; Imanishi, M.; Akai, S.; Takebe, Y.; Matsugi, M. Chem. Commun. 1998, 1183–1184. (c) Sugahara, T.; Ogasawara, K. Synlett 1996, 319–320. (d) Sakai, T.; Miki, Y.; Nakatani, M.; Ema, T.; Uneyama, K.; Utaka, M. Tetrahedron Lett. 1998, 39, 5233–5236. (e) Yoshida, N.; Kamikubo, T.; Ogasawara, K. Tetrahedron: Asymmetry 1998, 9, 3325–3329.
- 9. Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104, 7294–7299.
- (a) Amano Pharmaceutical Co., Ltd; Amano Enzyme USA Co., Ltd; Amano Enzyme Europe Ltd Lipases for Resolution and Asymmetric Synthesis; 1995.
 (b) Nakamura, K.; Hirose, Y. J. Syn. Org. Chem. Jpn. 1995, 53, 668–677.
 (c) Sugahara, T.; Ogasawara, K. Tetrahedron Lett. 1996, 37, 205–208.
 (d) Bianchi, D.; Battistel, E.; Bosetti, A.; Cesti, P.; Fekete, Z. Tetrahedron: Asymmetry 1993, 4, 777–782.
- 11. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096.